skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lozinski, Alexander R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The proton radiation belt contains high fluxes of adiabatically trapped protons varying in energy from ∼one to hundreds of megaelectron volts (MeV). At large radial distances, magnetospheric field lines become stretched on the nightside of Earth and exhibit a small radius of curvatureRCnear the equator. This leads protons to undergo field line curvature (FLC) scattering, whereby changes to the first adiabatic invariant accumulate as field strength becomes nonuniform across a gyroorbit. The outer boundary of the proton belt at a given energy corresponds to the range of magneticLshell over which this transition to nonadiabatic motion takes place, and is sensitive to the occurrence of geomagnetic storms. In this work, we first find expressions for nightside equatorialRCand field strengthBeas functions of Dst andL* to fit the TS04 field model. We then apply the Tu et al. (2014,https://doi.org/10.1002/2014ja019864) condition for nonadiabatic onset to solve the outer boundaryL*, and refine our expression forRCto achieve agreement with Van Allen Probes observations of 1–50 MeV proton flux over the 2014–2018 era. Finally, we implement this nonadiabatic onset condition into the British Antarctic Survey proton belt model (BAS‐PRO) to solve the temporal evolution of proton fluxes atL ≤ 4. Compared with observations, BAS‐PRO reproduces storm losses due to FLC scattering, but there is a discrepancy in mid‐2017 that suggests a ∼5 MeV proton source not accounted for. Our work sheds light on outer zone proton belt variability at 1–10 MeV and demonstrates a useful tool for real‐time forecasting. 
    more » « less